Partial differential equations to determine elasto-plastic stress–strain behavior from measured kinematic fields

نویسندگان

چکیده

A system of partial differential equations (PDEs) is derived to compute the full-field stress from an observed kinematic field when flow rule governing plastic deformation unknown. These generalize previously proposed that assume pure behavior without elasticity. method numerically solve these also presented. In addition force balance, are elastic–plastic decomposition gradient, assumption isotropy, and function mapping elastic strain known. The can be directly applied complex geometries, finite deformation, non-linear elasticity plasticity, compressible materials, rate dependent a variety hardening laws. This PDEs time dependent. Furthermore, it overcomes important prior limitation: cases where some regions body elastically deforming while others elasto-plastically deforming. two-dimensional case study necking in uniaxial tensile specimen investigated illustrate validate method. solved using fields output element simulation validated against this same showing accurate results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Differential Equations applied to Medical Image ‎Segmentation

‎This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Partial Differential Equations Midterm

1), find the explicit fundamental solution to the heat equation ∆u + b · ∇u − u t = 0 in R n × (0, ∞). (1) Letting G be what you find, show u 0 (x) = lim t→0 + R n G(x, t; y, 0)u 0 (y) dy, (2) when u 0 is bounded and continuous on R n. Taking the Fourier transform (with respect to x) of the equation gives −|ξ| 2 ˆ u + ib · ξ ˆ u − ˆ u t = 0 − |ξ| 2 + ib · ξ ˆ u = ˆ u t =⇒û = ce −(|ξ| 2 +ib·ξ)t ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Plasticity

سال: 2023

ISSN: ['1879-2154', '0749-6419']

DOI: https://doi.org/10.1016/j.ijplas.2022.103512